

NEBRASKA DEPARTMENT OF ENVIRONMENTAL QUALITY Air Quality Division

REC'D

AUG 3 1 2010

APCO

INITIAL NOTIFICATION FORM

Applicable Rule: 40 CFR Part 63, Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants (NESHAP) for Stationary Reciprocating Internal Combustion Engines (RICE) - Promulgated 6/15/04, 1/18/08, & 3/3/10

Company Name: Lyman-Richey Sand & Gravel Company

Facility ID#: 91666

Owner/Operator/Title: Attn: Stan Benke, Corporate Safety Director

Mailing Address 4315 Cuming Street

City: Omaha

Zip: 68131

Plant Address (if different than owner/operator's mailing address):

Facility Name: Pit #4 East Oreapolis (Portable)

Street: 300 East Bay Rd.

City: Plattsmouth

Zip: 68048

Plant Phone Number: 402-298-8123

Plant Contact/Title: Duane Hunt, Plant Superintendent

This form must be completed, signed and submitted to the following agencies:

NDEQ Air Quality Division 1200 'N' St. Atrium, Suite 400 Lincoln, NE 68509-8922

and

Region VII EPA - Air & Waste Management

901 N. 5th Street

Kansas City, KS 66101-2907

If your facility is located in Omaha or Lancaster County, you must submit a notification to the appropriate air pollution control agency in that area and Region VII EPA.

Provide the following information for the applicable stationary engine(s). Add additional tables or rows as needed.

Unit#	Engine Startup Date	Site Rating Brake Horsepower	Displacement (liters/cylinder)	Fuel(s) Combusted	Compression Ignition	Spark Ignition	Emergency	Limited Use
Dredge 49Y008- 36	5-08	3512 1500	3158CI 12	Ultralow sulfur diesel	⊠ YES	☐ 4-Stroke ☐ 2-Stroke ☐ Lean Burn ☐ Rich Burn	☐ YES	☐ YES
Dredge 64Z234- 84	5-08	3306 250	638CI 6	Ultralow sulfur diesel	⊠ YES	☐ 4-Stroke ☐ 2-Stroke ☐ Lean Burn ☐ Rich Burn	☐ YES	☐ YES
Booster 66B293- 7	5-08	0398 900	2946CI 12	Ultralow sulfur diesel	⊠ YES	☐ 4-Stroke ☐ 2-Stroke ☐ Lean Burn ☐ Rich Burn	☐ YES	☐ YES

Unit#	Engine Startup Date	Site Rating Brake Horsepower	Displacement (liters/cylinder)	Fuel(s) Combusted	Compression Ignition	Spark Ignition	Emergency	Limited Use
		,			☐ YES	☐ 4-Stroke ☐ 2-Stroke ☐ Lean Burn ☐ Rich Burn	☐ YES	☐ YES
II.					☐ YES	☐ 4-Stroke ☐ 2-Stroke ☐ Lean Burn ☐ Rich Burn	☐ YES	☐ YES
					☐ YES	4-Stroke 2-Stroke Lean Burn Rich Burn	☐ YES	☐ YES
☐ Face ☐ Face ☐ Face ☐ Source ☐ Ne ☐ Ex	eility is a recility is an arcility is an *Note: A HAP or 25 determinated angine(s) a source of H If YES, the meet the recompresses Type - Cow Source isting source isting source.	major source of area source of area source of major source is tons per year of tion is based on new/reconstruction (AP? Yes engine(s)) do requirements of sion Ignition Extent (Cett)	a facility that he of all HAPs comb all HAP emission acted emergences No es not have any of 40 CFR Part Engines or Subp	pollutants (HA as a potential to bined. All other son points inside the sy or limited used additional request of New Source part JJJJ for Sp.	emit greater the cources are are the facility fender engine and the cuirements under Performance ark Ignition I	ea sources. The ce line. > 500 horsepe der Subpart 2 e Standards S Engines .	e major/area (ower located ZZZZ, but yo Subpart IIII f	source I at a ou must for
Name:	A Respon The pi An ov A plan A gov A rand	sible Official caresident, vice provided the plan at engineer or sernment official king military of	resident, secretar t; upervisor of the p l, if the plant is of ficer, if the plant	y Director y, or treasurer of plant; bwned by the Fed is located at a management.	f the company deral, State, Ci nilitary base.	ity, or County	government; (
Stew	HE BEST	OF MY KNO Sible Official COR	OWLEDGE. STAN BE PORATE SAFE IAN-RICHEY CO	TY DIRECTOR		August 2 (Date)	<u>8, 2010</u>	